Pricing American Options using Simulation
نویسنده
چکیده
American options are financial contracts that allow exercise at any time until expiration. While the pricing of standard American option contracts has been well researched, with a few exceptions no analytical solutions exist. Valuation of more involved American option contracts, which include multiple underlying assets or pathdependent payoff, is still to a high degree an uncharted area. Most numerical methods work badly for such options as their time complexity scales exponentially with the number of dimensions. In this Master’s thesis we study valuation methods based on Monte Carlo simulations. Monte Carlo methods don’t suffer from exponential time complexity, but have been known to be difficult to use for American option pricing due to the forward nature of simulations and the backward nature of American option valuation. The studied methods are: Parametrization of exercise rule, Random Tree, Stochastic Mesh and Regression based method with a dual approach. These methods are evaluated and compared for the standard American put option and for the American maximum call option. Where applicable the values are compared with those from deterministic reference methods. The strengths and weaknesses of each method is discussed. The Regression based method essentially reduces the problem to one of selecting suitable basis functions. This choice is empirically evaluated for the following American option contracts; standard put, maximum call, basket call, Asian call and Asian call on a basket. The set of basis functions considered include polynomials in the underlying assets, the payoff, the price of the corresponding European contract as well as certain analytic approximation of the latter. Results from the empirical studies show that the regression based method is the best choice when pricing exotic American options. Furthermore, using available analytical approximations for the corresponding European option values as a basis function seems to improve the performance of the method in most cases.
منابع مشابه
American Option Pricing of Future Contracts in an Effort to Investigate Trading Strategies; Evidence from North Sea Oil Exchange
In this paper, Black Scholes’s pricing model was developed to study American option on future contracts of Brent oil. The practical tests of the model show that market priced option contracts as future contracts less than what model did, which mostly represent option contracts with price rather than without price. Moreover, it suggests call option rather than put option. Using t hypothesis test...
متن کاملBoyle options a monte carlo approach pdf
Methods for pricing American options are binomial trees and other lattice. Phelim Boyle was among the first to propose using Monte Carlo simulation to study.Abstract. The Monte Carlo approach has proved to be a valuable and flexible.
متن کاملA new approach to using the cubic B-spline functions to solve the Black-Scholes equation
Nowadays, options are common financial derivatives. For this reason, by increase of applications for these financial derivatives, the problem of options pricing is one of the most important economic issues. With the development of stochastic models, the need for randomly computational methods caused the generation of a new field called financial engineering. In the financial engineering the pre...
متن کاملPricing American Options by Simulation Using a Stochastic Mesh with Optimized Weights
This paper develops a simulation method for pricing path-dependent American options, and American options on a large number of underlying assets, such as basket options. Standard numerical procedures (lattice methods and nite difference methods) are generally inapplicable to such high-dimensional problems, and this has motivated research into simulation-based methods. The optimal stopping probl...
متن کاملOption pricing under the double stochastic volatility with double jump model
In this paper, we deal with the pricing of power options when the dynamics of the risky underling asset follows the double stochastic volatility with double jump model. We prove efficiency of our considered model by fast Fourier transform method, Monte Carlo simulation and numerical results using power call options i.e. Monte Carlo simulation and numerical results show that the fast Fourier tra...
متن کاملApproximate Dynamic Programming (ADP) and Dual Methods for Pricing American Options
It is only recently that simulation has begun to play an important role in pricing high-dimensional American options. This was due to the fact that since Monte Carlo simulation generally works forward in time while dynamic programming works backwards, it was generally believed that the two were somewhat incompatible. Research in recent years has shown that this is not the case and that Monte Ca...
متن کامل